PATIENTS DESERVE A BETTER IMPLANT SOLUTION OSSDSIGN® CRANIAL PSI ACCESSORIES

OSSDSIGN CRANIAL PSI ACCESSORIES

OssDsign Cranial PSI Accessories are a collection of devices aimed to facilitate an optimal placement and fitting of OssDsign Cranial PSI. Each available accessory is a custom-made device specifically designed for the patient’s unique anatomy, using patient specific CT data and 3D printing. All devices are manufactured using PA 2200.

Anatomical Model Original (AMO)
Visual and tactile guidance and orientation of the patient’s anatomy.

Anatomical Model Modified (AMM)
Visual and tactile guidance and orientation of the patient’s anatomy after removal of specific region of interest.

Plastic Drawing Guide (PDG)
Perioperative surgical guide that facilitates accurate placement and fitting of corresponding Cranial PSI.

Cranial Implant Trial (CIT)
Perioperative surgical guide that facilitates accurate visualization, placement and fitting of corresponding Cranial PSI.

<table>
<thead>
<tr>
<th>NAME</th>
<th>ARTICLE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomical Model Original (AMO)</td>
<td>303001-303008</td>
</tr>
<tr>
<td>Anatomical Model Modified (AMM)</td>
<td>303009-303016</td>
</tr>
<tr>
<td>Plastic Drawing Guide (PDG)</td>
<td>301008-301012</td>
</tr>
<tr>
<td>Cranial Implant Trial (CIT)</td>
<td>302001-302005</td>
</tr>
</tbody>
</table>
ANATOMICAL MODEL ORIGINAL *(non-sterile)*
The AMO is 3D printed directly from the patient’s specific CT data and is intended as visual and tactile guidance and orientation of the patient’s anatomy. It allows the surgeon to orientate the patient’s current bone anatomy, to evaluate features such as:
- Location of nerve outlets, major blood vessels, bone thickness
- Tumor location
- Location of existing implants

ANATOMICAL MODEL MODIFIED *(non-sterile)*
The modified anatomical models are based on the patient’s CT data, but also includes computerized changes to specific anatomical regions. The device helps the user to orientate the current bone anatomy according to discussed arrangements, including:
- Location of nerve outlets, major blood vessels, bone thickness
- Tumor location
- Location of existing implants
- Placement of corresponding OssDsign Cranial PSI’s fixation arms
- Dividing the cranium in sections for easier visual access

PLASTIC DRAWING GUIDE *(delivered sterile)*
The Plastic Drawing Guide is a perioperative tool, designed to fit a specific topography. It is designed based on the patient’s CT data and discussions with the operating surgeon, and is produced with 3D printing technology. The device is often recommended for cases where the desired cranial cavity for a corresponding Cranial PSI is not established. It facilitates an accurate resection, thus creating an optimal defect by which the implant is designed. The Drawing Guide is also available in titanium, allowing for more design options in complex areas.

CRANIAL IMPLANT TRIAL *(delivered sterile)*
The Cranial Implant Trial (CIT) represents OssDsign Cranial PSI in terms of shape, depth and slope of the outer perimeter. It is placed into the cranial cavity during surgery to determine if the corresponding Cranial PSI is compatible, without having to break the sterile barrier of the actual implant. The CIT also maintain the topographical curvature of its corresponding Cranial PSI, allowing the surgeon to evaluate the amount of soft tissue needed to close the defect. Additionally, the location of each Cranial PSI fixation arm is marked on the CIT to help determine if further dissection of tissue is needed to accommodate proper fixation of OssDsign Cranial PSI. The device is supplied with every Cranial PSI shipment.

Anatomical Model Original is an exact representation of the patient’s skull, providing anatomical orientation and guidance.

Anatomical Model Modified in a Y-section for anatomical and implant orientation and guidance, here highlighting the fixation arm marker.

The Plastic Drawing Guide allows for an accurate implant fit. The highlighted arrow indicates the device orientation.

Cranial Implant Trial allows for surgical precision and prediction with proper orientation due to the predesigned markers.